Total No. of Pages: 3

Seat No.

S.E. (Civil) (Semester-III) (Revised) Examination, May - 2017 FLUID MECHANICS-I

Sub. Code: 63341

Day and Date: Wednesday, 17-05-2017

Total Marks: 100

Time: 2.00 p.m. to 5.00 p.m.

Instructions: 1)

- 1) Attempt any three questions from each section.
- 2) Figures to the right indicate full marks.

SECTION-I

- Q1) a) Define and give practical example of following properties. Also give their SI units. Explain their significance.
 - i) Viscosity
 - ii) Vapour pressure
 - iii) Surface tension and capillary
 - iv) Compressibility-Bulk modulus of elasticity
 - b) The pressure drop ΔP in a pipe of diameter D and length L depends on the density ρ, viscosity μ, mean velocity V, average height of roughness k Show that the pressure drop can be expressed as,

 $\Delta P = \rho V^2 f(L/D, \mu/ \rho VD, k/D)$

- Q2) a) Explain how total pressure is determined for a curved surface immersed in liquid? [5]
 - b) Find total pressure acting on a dam with vertical u/s face. The depth of water stored is 40m. Consider unit length of dam. Draw a sketch to show pressure distribution.
 [6]
 - c) Explain the procedure of determination of metacentric height of a floating object experimentally. Draw sketch. [5]

P.T.O.

CIT	227
21	1-431

[8]

Q3) a) In an incompressible flow, the velocity vector is given by,

 $V = (6xt + yz^2) I + (3t + xy^2) j + (xy - 2xyz - 6tz)k$

- i) Verify whether the continuity equation is satisfied?
- ii) Determine the acceleration vector at point (2,2,2) and t=2.0
- b) Define following terms

[8]

- i) Stream function
- ii) Velocity potential

- iii) Stream line
- iv) Streak line

Further explain flownet and its uses.

Q4) Write short notes on any three.

[18]

- a) Hydraulic similitude: importance and application.
- b) Pressure measurement devices.
- c) Equilibrium condition for floating and completely submerged objects.
- d) Scale ratios and distorted models.

SECTION-II

Q5) a) Draw a neat sketch of following devices and explain their working. [8]

i)Venturimeter

ii) Pitot tube

b) A tank of vertical sides and having horizontal base of 3×3 m², contains water to a depth of 4m. Water is discharging through an orifice 4 cm diameter provided at the bottom of the tank. Determine the time to drop the level of water by 1m. Take C_d = 0.62. [8]

Prove the formula used.

- Q6) a) Derive Hazen-Poiseuille equation for laminar flow and further prove that friction factor $f = 64/R_N$, for laminar flow [8]
 - b) The velocity distribution in the boundary layer is given by, $u/U = 2(y/\delta), -(y/\delta)^2, \delta$ is being boundary layer thickness. Calculate,
 - i) Displacement thickness
 - ii) Momentum thickness
 - iii) Energy thickness
- Q7) a) What is syphon? Derive an expression for negative pressure at summit.

 Draw a neat sketch. [8]
 - b) What do you mean by compound pipe and equivalent pipe? A compound pipe system consist of 1800 m of 0.5 m diameter, 1200 m of 0.4 m diameter and 600 m of 0.3 m diameter new cast iron pipes connected in series. Convert the system to, [8]
 - i) An equivalent length of 0.4 diameter pipe.
 - ii) Equivalent size pipe 3600 m long.
- Q8) Write short notes on any three.

[18]

- a) Hydraulic coefficient of orifice.
- b) Moody's chart.
- c) Separation of boundary layer: Reasons and methods of control.
- d) Water hammer causes, effect and control.
- e) Prandlt mixing length theory.

